~/cartesianChart/scatterseries.md

Scatter Series Properties

This article do not include all the properties of the Scatter Series Properties class, it only highlights some features, to explore the full object checkout the API explorer

Name property

The name property is a string identifier that is normally used in tooltips and legends to display the data name, if this property is not set, then the library will generate a name for the series that by default is called "Series 1" when it is the first series in the series collection, "Series 2" when it is the second series in the series collection, "Series 3" when it is the third series in the series collection, and so on a series n will be named "Series n".

SeriesCollection = new ISeries[]
{
    new ScatterSeriesProperties<int>
    {
        Values = new []{ 2, 5, 4, 2, 6 },
        Name = "Income", // mark
        Stroke = null
    },
    new ScatterSeriesProperties<int>
    {
        Values = new []{ 3, 7, 2, 9, 4 },
        Name = "Outcome", // mark
        Stroke = null
    }
};

Values property

The Values property is of type IEnumerable<T>, this means that you can use any object that implements the IEnumerable<T> interface, such as Array, List<T> or ObservableCollection<T>, this property contains the data to plot, you can use any type as the generic argument (<T>) as soon as you let the library how to handle it, the library already knows how to handle multiple types, but you can register any type and teach the library how to handle any object in a chart, for more information please see the mappers article.

var series1 = new ScatterSeriesProperties<int>
{
    Values = new List<int> { 2, 1, 3 }
};

// == Update the chart when a value is added, removed or replaced  == // mark
// using ObservableCollections allows the chart to update
// every time you add a new element to the values collection
// (not needed in Blazor, it just... updates)
var series2 = new ScatterSeriesProperties<double>
{
    Values = new ObservableCollection<double> { 2, 1, 3 }
}
series2.add(4); // and the chart will animate the change!

// == Update the chart when a property in our collection changes  == // mark
// if the object implements INotifyPropertyChanged, then the chart will
// update automatically when a property changes, the library already provides
// many 'ready to go' objects such as the ObservableValue class.
var observableValue =  new ObservableValue(5);
var series3 = new ScatterSeriesProperties<ObservableValue>
{
    Values = new ObservableCollection<ObservableValue> { observableValue },
}
observableValue.Value = 9; // the chart will animate the change from 5 to 9!

// == Passing X and Y coordinates // mark 
// you can indicate both, X and Y using the Observable point class.
// or you could define your own object using mappers.
var series4 = new ScatterSeriesProperties<ObservablePoint>
{
    Values = new ObservableCollection<ObservablePoint> { new ObservablePoint(2, 6)}
}
// == Custom types and mappers == // mark
// finally you can also use your own object, take a look at the City class.
public class City 
{
    public string Name { get; set; }
    public double Population { get; set; }
}
// we must let the series know how to handle the city class.
// use the Mapping property to build a point from the city class
// you could also register the map globally.
// for more about global mappers info see:
// https://livecharts.dev/docs/eto/2.0.0-beta.950/Overview.Mappers
var citiesSeries = new ScatterSeriesProperties<City>
{
    Values = new City[]
    { 
        new City { Name = "Tokio", Population = 9 },
        new City { Name = "New York", Population = 11 },
        new City { Name = "Mexico City", Population = 10 },
    },
    Mapping = (city, point) =>
    {
        // this function will be called for every city in our data collection
        // in this case Tokio, New York and Mexico city
        // it takes the city and the point in the chart liveCharts built for the given city
        // you must map the coordinates to the point

        // use the Population property as the primary value (normally Y)
        point.PrimaryValue = (float)city.Population;

        // use the index of the city in our data collection as the secondary value
        // (normally X)
        point.SecondaryValue = point.Context.Index;
    }
};

Automatic updates do not have a significant performance impact in most of the cases!

Data labels

Data labels are labels for every point in a series, there are multiple properties to customize them, take a look at the following sample:

new ScatterSeriesProperties<double>
{
    DataLabelsSize = 20,
    DataLabelsPaint = new SolidColorPaint(SKColors.Blue),
    // all the available positions at:
    // https://livecharts.dev/api/2.0.0-beta.950/LiveChartsCore.Measure.DataLabelsPosition
    DataLabelsPosition = LiveChartsCore.Measure.DataLabelsPosition.Top,
    // The DataLabelsFormatter is a function 
    // that takes the current point as parameter
    // and returns a string.
    // in this case we returned the PrimaryValue property as currency
    DataLabelsFormatter = (point) => point.PrimaryValue.ToString("C2"),
    Values = new ObservableCollection<double> { 2, 1, 3, 5, 3, 4, 6 },
    Fill = null
}

The previous series will result in the following chart:

image

Stroke property

If the stroke property is not set, then LiveCharts will create it based on the series position in your series collection and the current theme.

image

Series = new ISeries[]
{
    new ScatterSeries<ObservablePoint>
    {
        Stroke = new SolidColorPaint(SKColors.Blue) { StrokeThickness = 4 }, // mark
        Fill = null,
        Values = new ObservableCollection<ObservablePoint>
        {
            new ObservablePoint(2.2, 5.4),
            new ObservablePoint(4.5, 2.5),
            new ObservablePoint(4.2, 7.4),
            ...
        }
    }
};

Paints can create gradients, dashed lines and more, if you need help using the Paint instances take a look at the Paints article.

Fill property

If the fill property is not set, then LiveCharts will create it based on the series position in your series collection and the current theme.

image

Series = new ISeries[]
{
    new ScatterSeries<ObservablePoint>
    {
        Fill = new SolidColorPaint(SKColors.Blue), // mark
        Stroke = null,
        Values = new ObservableCollection<ObservablePoint>
        {
            new ObservablePoint(2.2, 5.4),
            new ObservablePoint(4.5, 2.5),
            new ObservablePoint(4.2, 7.4),
            ...
        }
    }
};

Paints can create gradients, dashed lines and more, if you need help using the Paint instances take a look at the Paints article.

GeometrySize property

Determines the size of the geometry, if this property is not set, then the library will decide it based on the theme.

image


var r = new Random();
var values1 = new ObservableCollection<ObservablePoint>();
var values2 = new ObservableCollection<ObservablePoint>();

for (var i = 0; i < 20; i++)
{
    values1.Add(new ObservablePoint(r.Next(0, 20), r.Next(0, 20)));
    values2.Add(new ObservablePoint(r.Next(0, 20), r.Next(0, 20)));
}

Series = new ISeries[]
{
    new ScatterSeries<ObservablePoint, RectangleGeometry>
    {
        Values = values1,
        GeometrySize = 10, // mark
    },
    new ScatterSeries<ObservablePoint, CircleGeometry>
    {
        Values = values2,
        GeometrySize = 30 // mark
    }
};

MinGeometrySize property

This property specifies the minimum size a geometry can take when the Weight plane is enabled, to enable this plane you could use the WeightedPoint class, the library is ready to plot this instance, alternatively you can register a new type using mappers, and use the TertiaryValue property of the ChartPoint instance to specify the weight of each point.

Notice in the following image how every shape has a different size, the size of each geometry represents the Weight of each point, in this case the weight takes a random integer from 0 to 20, so when the Weight is 0 the size of the geometry will be 15 pixels as specified in the MinGeometrySize property, when the Weight is 20 the geometry size will be 40 defined by the GeometrySize property, for any Weight between this range the library will interpolate lineally to determine the corresponding size.

image

var r = new Random();
var values1 = new ObservableCollection<WeightedPoint>();
var values2 = new ObservableCollection<WeightedPoint>();

for (var i = 0; i < 20; i++)
{
    values1.Add(new WeightedPoint(r.Next(0, 20), r.Next(0, 20), r.Next(0, 20)));
    values2.Add(new WeightedPoint(r.Next(0, 20), r.Next(0, 20), r.Next(0, 20)));
}

Series = new ObservableCollection<ISeries>
{
    new ScatterSeries<WeightedPoint, RoundedRectangleGeometry>
    {
        Values = values1,
        GeometrySize = 40,
        MinGeometrySize = 15 // mark
    },

    new ScatterSeries<WeightedPoint, CircleGeometry>
    {
        Values = values2,
        GeometrySize = 40,
        MinGeometrySize = 15 // mark
    }
};

Plotting custom types

You can teach LiveCharts to plot any type as soon as you let the library how to handle that object, there are two ways of doing so: Mappers or implementing IChartEntity, mappers are quick to setup, implementing IChartEntity is more performant and is the recommended way.

Mappers

public record TempSample(int Time, double Temperature, string Unit);

var chart = new SKCartesianChart
{
    Width = 900,
    Height = 600,
    Series = new[]
    {
        new ScatterSeriesProperties<TempSample>
        {
            Mapping = (sample, chartPoint) =>
            {
                // use temperature as primary value (normally Y)
                chartPoint.PrimaryValue = sample.Temperature;
                // use time as secondary value (normally X)
                chartPoint.SecondaryValue = sample.Time;
            },
            Values = samples
        }
    },
    XAxes = new[] { new Axis { Labeler = value => $"{value} seconds" } },
    YAxes = new[] { new Axis { Labeler = value => $"{value} °C" } }
};

// -------------------------------------------------------------------
// IMPORTANT NOTE
// -------------------------------------------------------------------
// There are 2 special plots that use more than X and Y coordinates.

// Weighted plots: HeatMaps and Bubble charts use 3 coordinates, X, Y and Weight.
// Mapping = (sample, chartPoint) =>
// {
//    chartPoint.PrimaryValue = sample.X;
//    chartPoint.SecondaryValue = sample.Y;
//    chartPoint.TertiaryValue = sample.Weigth;
// }

// While financial Points use 5.
// Coordinate = new Coordinate(High, X, Open, Close, Low);
// Mapping = (sample, chartPoint) =>
// {
//    chartPoint.PrimaryValue = sample.High;
//    chartPoint.SecondaryValue = sample.X;
//    chartPoint.TertiaryValue = sample.Open;
//    chartPoint.QuaternaryValue = sample.Close;
//    chartPoint.QuinaryValue = sample.Low;
//}

Implementing IChartEntity

var chart = new SKCartesianChart
{
    Width = 900,
    Height = 600,
    Series = new[]
    {
        new LineSeries<TempSample>
        {
            Values = samples
        }
    },
    XAxes = new[] { new Axis { Labeler = value => $"{value} seconds" } },
    YAxes = new[] { new Axis { Labeler = value => $"{value} °C" } }
};

// this object uses the CommunityToolkit.Mvvm to implement INotifyPropertyChanged also
public partial class TempSample : ObservableObject, IChartEntity
{
    [ObservableProperty]
    private int _time;

    [ObservableProperty]
    private double _temperature;

    // Use the coordinate property to let LiveCharts know the position of the point.
    public Coordinate Coordinate { get; protected set; }

    // The meta data property is used by LiveCharts to store info about the plot.
    public ChartEntityMetaData? MetaData { get; set; }

    protected override void OnPropertyChanged(PropertyChangedEventArgs e)
    {
        Coordinate = new(Time, Temperature);
        base.OnPropertyChanged(e);
    }
}

// -------------------------------------------------------------------
// IMPORTANT NOTE
// -------------------------------------------------------------------
// There are 2 special plots that use more than X and Y coordinates.

// Weited plots: HeatMaps and Bubble charts use 3 coordinates, X, Y and Weight.
// Coordinate = new Coordinate(X, Y, Weight);
// https://github.com/beto-rodriguez/LiveCharts2/blob/master/src/LiveChartsCore/Defaults/WeightedPoint.cs

// While financial Points use 5.
// Coordinate = new Coordinate(High, X, Open, Close, Low);
// https://github.com/beto-rodriguez/LiveCharts2/blob/master/src/LiveChartsCore/Defaults/FinancialPoint.cs
See the full custom types article

Custom geometries

You can use any geometry to represent a point in a series.

Series = new List<ISeries>
{
    // use the second argument type to specify the geometry to draw for every point
    // there are already many predefined geometries in the
    // LiveChartsCore.SkiaSharpView.Drawing.Geometries namespace
    new ScatterSeriesProperties<double, RectangleGeometry>
    {
        Values = new double[] { 3, 3, -3, -2, -4, -3, -1 }
    },

    // you can also define your own SVG geometry
    // MyGeometry class let us change the Path at runtime
    // Click on the on any point to change the path.
    // You can find the MyGeometry.cs file below
    new ScatterSeriesProperties<double, MyGeometry>
    {
        Values = new double[] { -2, 2, 1, 3, -1, 4, 3 }
    }

    // Note: Depending on the series type, the geometry could require to satisfy some constrains
};

public class MyGeometry : LiveChartsCore.SkiaSharpView.Drawing.Geometries.SVGPathGeometry
{
    public MyGeometry()
        : base(SVGPoints.Star)
    { 
        // the LiveChartsCore.SkiaSharpView.SVGPoints contains many predefined SVG paths
        // you can also pass your own path there.
    }
}

ZIndex property

Indicates an order in the Z axis, this order controls which series is above or behind.

IsVisible property

Indicates if the series is visible in the user interface.

DataPadding

The data padding is the minimum distance from the edges of the series to the axis limits, it is of type System.Drawing.PointF both coordinates (X and Y) goes from 0 to 1, where 0 is nothing and 1 is the axis tick an axis tick is the separation between every label or separator (even if they are not visible).

If this property is not set, the library will set it according to the series type, take a look at the following samples:

new LineSeries<double>
{
    DataPadding = new System.Drawing.PointF(0, 0),
    Values = new ObservableCollection { 2, 1, 3, 5, 3, 4, 6 },
    GeometryStroke = null,
    GeometryFill = null,
    Fill = null
}

Produces the following result:

image

But you can remove the padding only from an axis, for example:

new LineSeries<double>
{
    DataPadding = new System.Drawing.PointF(0.5f, 0),
    Values = new ObservableCollection<double> { 2, 1, 3, 5, 3, 4, 6 },
    GeometryStroke = null,
    GeometryFill = null,
    Fill = null
}

image

Or you can increase the distance:

new LineSeries<double>
{
    DataPadding = new System.Drawing.PointF(2, 2),
    Values = new ObservableCollection<double> { 2, 1, 3, 5, 3, 4, 6 },
    GeometryStroke = null,
    GeometryFill = null,
    Fill = null
}

image